The Hong Kong Principles for Assessing Researchers: Fostering Research Integrity

David Moher1,2, Lex Bouter3,4, Sabine Kleinert5, Paul Glasziou6, Mai Har Sham7
Virginia Barbour8, Anne-Marie Coriat9, Nicole Foeger10, Ulrich Dirnagl11

1Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research Institute; 2School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada; 3Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, location VUmc; 4Department of Philosophy, Faculty of Humanities, Vrije Universiteit, Amsterdam, The Netherlands; 5The Lancet, London Wall Office, London, UK; 6Institute for Evidence-Based healthcare, Bond University, Gold Coast, Qld, Australia; and 7School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; 8Queensland University of Technology (QUT), Brisbane, Australia; 9Wellcome Trust, London; 10Austrian Agency for Research Integrity, Vienna, Austria; 11Berlin Institute of Health, QUEST Center for Transforming Biomedical Research, Berlin, Germany

David Moher: ORCID 0000-0003-2434-4206
Lex Bouter: ORCID 0000-0002-2659-5482
Sabine Kleinert: ORCID 0000-0001-7826-1188
Paul Glasziou: ORCID 0000-0001-7564-073X
Mai Har Sham: ORCID 0000-0003-1179-7839
Virginia Barbour: ORCID: 0000-0002-2358-2440
Anne-Marie Coriat: ORCID 0000-0003-2632-1745
Nicole Foeger: ORCID 0000-0001-7775-7325
Ulrich Dirnagl: ORCID 0000-0003-0755-6119

23rd November 2019
Abstract

The primary goal of research is to advance knowledge. For that knowledge to benefit research and society, it must be trustworthy. Trustworthy research is robust, rigorous and transparent at all stages of design, execution and reporting. Initiatives such as the San Francisco Declaration on Research Assessment (DORA) and the Leiden Manifesto have led the way bringing much needed global attention to the importance of taking a considered, transparent and broad approach to assessing research quality. Since publication in 2012 the DORA principles have been signed up to by over 1500 organizations and nearly 15,000 individuals. Despite this significant progress, assessment of researchers still rarely includes considerations related to trustworthiness, rigor and transparency. We have developed the Hong Kong Principles (HKPs) as part of the 6th World Conference on Research Integrity with a specific focus on the need to drive research improvement through ensuring that researchers are explicitly recognized and rewarded (i.e., their careers are advanced) for behavior that leads to trustworthy research. The HKPs have been developed with the idea that their implementation could assist in how researchers are assessed for career advancement with a view to strengthen research integrity. We present five principles: responsible research practices; transparent reporting; open science (open research); valuing a diversity of types of research; and recognizing all contributions to research and scholarly activity. For each principle we provide a rationale for its inclusion and provide examples where these principles are already being adopted.
Introduction

In a quest to advance knowledge, researchers publish approximately 1.5 million journal articles each year. The presumption is that this literature can be used by other researchers, stakeholders, and the wider society because it is trusted, robust, rigorous and complete.

The approach taken to validating research and its outcomes differs depending on the nature of the research. For example, to rigorously examine the effects of a health intervention, trial participants (human or animal) are typically required to be randomized to the intervention being studied. Many researchers advocate registration of protocols as a way to ensure transparency and to enable others to engage with their research. Subsequently, the use of reporting guidelines can help ensure complete and transparent reporting of the researchers’ methods and results. When the research is being disseminated, the research team would ensure that the associated data, materials and any analytical code are made available as an integral part of publication. Such data sharing facilitates re-analysis of the data to check reproducibility and to perform secondary analyses.

Although some mechanisms exist to support researchers in ensuring transparency at all stages of design, execution and reporting, there is not widespread adoption of these practices. There are many interwoven reasons for this. One contributing factor, we argue, is that little emphasis is placed on the rigor of research when hiring, reviewing and promoting researchers. Working together across the research sector as a whole to address this systemic issue, we believe, offers a global opportunity to improve research and impact.

We developed the Hong Kong Principles (HKPs) as part of the 6th World Conference on Research Integrity (WCRI) specifically to drive greater recognition for researchers who commit to robust, rigorous and transparent practices (i.e., their careers are advanced) (see Figure). If implemented, the HKPs could play a critical role in evidence-based assessments of researchers and put research rigor at the heart of assessment, as well as open up research to the wider benefit of society.

We propose five principles, each with a rationale for its inclusion. We illustrate these principles with examples where we know they exist. These examples are not exhaustive, and many are relevant to more than one principle. Together, they illustrate of a breadth of approaches as to how these principles can operate at the very highest levels of international research.
Early drafts of the HKPs were circulated to the 700 participants registered for the 6th WCRI. Further discussions took place during two sessions at the 6th WCRI. A penultimate version was uploaded on the 6th WCRI website after the conference. More than 100 people provided input and feedback. We acknowledge all of these valuable contributions and the global leadership of those working on the San Francisco Declaration on Research Assessment (DORA), the Leiden Manifesto and other initiatives to promote the responsible use of metrics, which have laid the foundations for much of our work (1-4).

Principles

Principle 1: Assess researchers on responsible practices from conception to delivery, including the development of the research idea, research design, methodology, execution and effective dissemination.

Rationale

The numbers of publications, citations, and total volume of grants are often still the dominant metrics used by research institutions for assessing and rewarding their researchers (1-4). Providing bonuses to academics for publishing in certain journals (i.e., merit pay) is also common in many parts of the world (5-7). These assessment criteria tell assessors little about the researchers and the rigor of their work; thus they are not particularly ‘responsible’ metrics. These metrics can also be unduly influenced by field and citation practices and provide little information about a publication’s (and therefore a researcher’s) contributions to research and society. Other criteria are required to provide a broader view of markers of best practices: for example, the extent to which a researcher develops research questions with the involvement of appropriate members of the public (see Figure).

Current implementation

The Canadian Institutes of Health Research’s Strategy for Patient-Oriented Research (SPOR) is a multi-million-dollar initiative to bring patients into a broad range of activities regarding research across Canadian provinces and territories (8). Patients are now active in the development of research projects in setting priorities and formulating study questions. The Ontario response (Ontario SUPPORT Unit) has included a series of articles with patients taking a leadership role in co-authoring the content (9). In the UK, the James Lind Alliance, funded by the UK National Institute of Health Research (NIHR), is a
successful example of including patients, carers and clinicians to develop priority-setting partnerships (10) and question formulation (11).

With a focus on enhancing reproducibility the US National Institutes of Health (NIH) have revised their application instructions and review criteria to strengthen scientific rigor and transparency (12). One of the resources they recommend is the Experimental Design Assistant (EDA) developed by The National Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs). This 10-module online tool was developed to assist researchers in the design and analysis of animal experiments. It includes dedicated support for randomization, blinding and sample size calculation. It can also be used to help researchers prepare the experimental design information and analysis plan requested for grant applications (13). The NC3Rs encourages the use of the EDA so that applicants can generate an EDA report, which can be submitted in place of the experimental design and methodology appendix.

Other examples of preferred criteria include social media metrics as indicators of disseminating research (14), public lectures about the results of a research project, public engagement and other types of events that bring together funders, researchers and other stakeholders to work on an effective communication plan of the research program (15). Organizations such as the Wellcome Trust are taking a holistic attitude to redefining their approach to engagement explicitly to help people feel empowered to access, use, respond to and create health research (16).

Principle 2: Value the accurate and transparent reporting of all research, regardless of the results.

Rationale

Failure to publish all findings of all studies seriously distorts the evidence base for decision making. For example, a systematic review of trials of reboxetine for treating depression found that almost three quarters of included patients were in unpublished trials (17). Selective publishing of research with positive results (i.e., publication bias) distorts science’s evidence-base and has been demonstrated in a variety of disciplines including economics, psychology and clinical and preclinical health research (e.g., 18). Furthermore, the frequency of other reporting biases (e.g., switched primary outcomes without disclosure, and spin) is around 30% (19). This is unacceptably high and diminishes the trustworthiness and integrity of research (7). It also appears that Promotion and Tenure Committees (PTCs) generally do
not give sufficient importance to registering protocols and data analysis plans, full publishing of completed studies or making data, code, and materials available (20).

Current implementation

Study registration and reporting guidelines are useful tools to help improve the completeness and transparency of a very broad spectrum of research (e.g., 21-24). As part of the editorial policies of the Wellcome Trust’s open access publishing platform (Wellcome Open Research (WOR)), authors are required to use reporting guidelines for protocols (e.g., SPIRIT) and completed studies (e.g., ARRIVE) (25). Other funders, such as Gates Open Research (26), the NC3Rs Gateway (27) and the Association of Medical Research Charities (28), do likewise. To help reduce publication bias, WOR also requires registration through one of several different options (e.g., registered reports) (25). Similarly, to promote the registration and publication of all research the NIHR in the UK indicate that “When submitting an application to NIHR programmes for funding for a new clinical trial, the applicant must disclose past publication and trial Registration history for any relevant publications and research grants held, referenced in the application.” (29). While these are examples of best practice from funders, we were unable to find any research institution that has incorporated them into researcher assessments (20).

Several research institutions (e.g., University of Toronto) are now recommending that their clinical trialists use SEPTRE (30), a web-based protocol creation and management tool. When SEPTRE is used, protocol information for trials is automatically registered in clinicaltrials.gov. This saves time and helps the researchers, and their research institutions, to maintain best publication practices (e.g., trial registration). Some journals in the social sciences, particularly psychology, use registered reports to help ensure that research is published regardless of its results (31,32).

Principle 3: Value the practices of open science (open research) - such as open methods, materials and data.

Rationale

Openness in research is more than just access to research – it brings equality to the research process. It encompasses a range of practices across the entire lifecycle of research (33). Access to research should not be about who has the resources to pay to see behind a paywall, typically subscription journals. Healthcare and social policy decisions should be made based on access to all research knowledge rather
than only a part of it (34). A considerable amount of public funds is used for research and its results can have profound social impact. Preclinical scientists are committing to openly share their laboratory notebooks (35) to streamline research, foster collaborations and reduce unnecessary duplication. In an effort to deter questionable authorship practices, the Consortia Advancing Standards in Research Administration Information supports the CRedit Taxonomy (36) as a way for research authors to more openly describe how each person has contributed to a research project.

Data sharing is another example of openness but is not common practice in clinical research (with some exceptions, such as genetics) (37) although patients seem supportive of sharing their data, at least of randomized trials they have participated in (38). Data sharing is also not considered standard in many other disciplines. Without data sharing it is difficult to check the selectivity of reports; data sharing is key to addressing the reproducibility crisis (39) and building trust (40). There are varying estimates as to which proportion of research is made available through open access mediums, such as open access journals, repositories, or as preprints, but it is far from 100% (41).

Current implementation

Ghent University, Belgium, has employed data sharing guidance stating, “Sound data management is a basic requirement for this (academic analysis) and provides additional guarantees for a flawless methodology, for sharing, and reusing data by other researchers in an Open Science context and for the accountability of a researchers own academic integrity” (42). The Nanyang Technological University (NTU), Singapore, implemented an Open Access policy in 2011. All NTU faculty and staff must deposit their final peer-reviewed manuscript of journal articles and conference papers in the Digital Repository (DR-NTU) maintained by the Library upon acceptance of their publications. At NTU’s faculty of medicine, random data audits are conducted on the submitted (required) Data Management Plans (DMPs) and checks are made to see if the final data are indeed shared on NTU’s open access data repository DR-NTU.

To help facilitate data sharing the University of Cambridge has introduced the concept of ‘data champions’ (43). Here, volunteers advise members of the research community on proper handling of research data supporting the use of the Findable, Accessible, Interoperable, and Re-usable (FAIR) research principles (44). Delft University of Technology, The Netherlands, has taken this concept a step further and implemented it as a career assessment criterion (45). The University of Glasgow’s academic
promotion criteria explicitly allows for data sharing as a research and scholarship output (to support replication) (46).

Some journals have also established strong data sharing policies. For example, the PLOS journals “require authors to make all data underlying the findings described in their manuscript fully available without restriction at the time of publication. When specific legal or ethical requirements prohibit public sharing of a dataset, authors must indicate how researchers may obtain access to the data. Refusal to share data and related metadata and methods in accordance with this policy will be grounds for rejection.” (47). Given that societal benefit is part of an emerging career assessment, clinical researchers should also respond to a growing view that patients want their data shared (38).

Open research is supported by key infrastructure compliance, such as requiring an Open Researcher and Contributor ID (ORCID) by every researcher, whereby each researcher can be uniquely identified. A recent letter from global funders committing to Implementing ORCIDs for all researchers is a significant step forward (48). This was recently implemented at the Ottawa Hospital Research Institute (49). In Australia and New Zealand there is a consortium that supports ORCID nationally.

The NIH promotes the use of preprints in grant applications (50) as do all major UK public funders (e.g., Medical Research Council, UK) (51), The Wellcome Trust made them compulsory for work in health emergencies and promotes their use widely in particular for early career researchers (52).

Principle 4: Value a broad range of research and scholarship, such as replication, innovation, translation, synthesis, and meta-research.

Rationale

A system that rewards benefit to society and encourages trustworthy and important research needs to take the different types of research into account: creating new ideas; testing them; replicating key findings; synthesis of existing research; developing and validating new tools; measures or methods; etc. Different indicators and criteria need to be developed that are relevant to these different types and stages of research (see Figure). This includes different timeframes of assessment for different types of research.
Incentives that encourage one fixed idea of the ‘right kind’ of research will be slow, or even stall, progress. So-called blue-sky research that builds on chance findings or curiosity-driven research based on ‘out-of-the-box’ thinking should be possible and encouraged, as well in an academic reward system that values societal progress (53). For example, the discovery of graphene at the University of Manchester, UK, was the result of Friday afternoon discussions outside the ‘normal’ research activities (54). Other examples from a broad range of disciplines exist (55). The short-term nature of academic reward cycles makes this kind of research less attractive for funders, institutions and individual researchers. Equally, replication studies or research synthesis efforts are often not regarded as innovative enough in researcher assessments despite their critical importance for the credibility of research, or for a balanced and robust systematic presentation of all available evidence, respectively (39,56). This is not universally appreciated by PTCs. Research on research and meta-research are practiced at, for example, at METRICS (Stanford, USA) (57), QUEST (Berlin, Germany) (58) whose focus is on clinical and preclinical meta-research, and the Meta Research Center at Tilburg University (59) (Tilburg, The Netherlands) whose focus is on the social sciences. Such activities are important to inform and improve research practices and therefore contribute to making research more reliable and relevant.

Current implementation

Some funders have already recognized the relevance of a broad range of research activities. The Research Impact Assessment Platform (Researchfish) works to capture some of this diversity and can generate reports on the impact of a broad spectrum of funded research (60). The Wellcome Success Framework highlights the importance of a long-term vision and shared objectives in order to take a more balanced approach to assessment (61). The German Federal Ministry of Science and Education is funding preclinical confirmatory trials (62).

The Wellcome Trust has developed a new Longitudinal Population Studies Strategy, funded data re-use prizes (63) and supports research on research (64). All approaches are aimed at valuing a broad range of scholarship and maximizing the value of research. The Netherlands Organization for Scientific Research is in its third call for replication studies (65). Research on research and meta-research are also gaining momentum and now have some formal outlets. For example, PLOS Biology and eLIFE have a meta-research section in their journals (66,67). We were unable to find any academic institution that has incorporated replication or meta-research into their career assessment portfolio (20). NIHR requires the completion of a systematic review prior to funding any new research (68). The NC3Rs have also
promoted the importance of systematic reviews for providing a rationale for project proposals (69,70).

In the event that such a review does not exist, they provide funding to perform one.

Principle 5: Value a range of other contributions to responsible research and scholarly activity, such as peer review for grants and publications, mentoring, outreach, and knowledge exchange.

Rationale
As discussed alongside Principle 1, research assessments frequently focus on a narrow range of easy to measure metrics including publications, citations and funding income (1,20). For the research ecosystem to function optimally, other research activities are also essential. Peer review remains the cornerstone of quality assessment of grants, publications and conferences. The quality of peer review contributions to journals and funders, should also be part of assessments for promotion and tenure as should contributions to various research infrastructure, oversight, or regulations. Equally, contributions to improvements that go beyond an individual-centered approach for assessment should be considered.

These activities are currently largely missing from PTCs (20). Contributions to developing the careers of others at all stages of their career is critical as are contributions various committees related to research (e.g., assuming the role of an editor). How best to do this without creating further barriers and bureaucracy, however, has long been debated (71).

Any reward system that has the whole research enterprise at heart and aims to foster a climate conducive to trustworthy and useful research with the highest regard to integrity, needs to find ways to incorporate these vital roles into its overall assessment structure.

Current implementation
Macquarie University, Sydney, Australia, has some exciting initiatives in their new academic promotion policy which includes five pillars one of which is in leadership and citizenship. Here researchers can show their alignment with the university’s values and broader contribution to the university, and its community (72). As a result of this implementation, the number of promotion applications increased by 50% and the number of women promoted has also increased.

The University of Glasgow’s academic promotion criteria explicitly rewards researchers for participation in peer review and other related activities (e.g., journal editorship) (73,74). In order for this to occur, it is
necessary to have organizations that can provide reviewers with a permanent identifier (a Digital Object Identifier (DOI)) for journals that publish Open Reviews (75) that can be included in a researcher’s CV or which can aggregate completed peer reviews (76). Such policies might also help promote more meaningful involvement in training in peer review (76). The University of Exeter, UK, has developed ‘Exeter Academic’, a hub to help their researchers navigate career progression (77). Leadership and citizenship are two (of five) major areas of focus. The former includes mentoring and the latter includes avenues to disseminate research knowledge from the university’s researchers.

The Finnish Advisory Board on Research Integrity (TENK) template for researcher CVs includes a broad spectrum of contributions including mentoring and ‘trust in society’ (78). As a measure of mentorship, Maastricht University, The Netherlands assesses the career progression of its PhD graduates (79). We were unable to identify research institutions that reward researchers who have participated in training courses on high-quality mentorship (20).

The Irish Health Research Board (HRB) has a knowledge exchange and dissemination grant program providing existing HRB-funded researchers with an opportunity to seek supplementary funding for exchange and dissemination activities that can accelerate and maximize the potential translation and impact of the research findings, and learning gained, on policy or practice and health outcomes (80). A similar scheme exists through the Canadian Institutes of Health Research (81) and the NC3Rs Skills and Knowledge Transfer grants (82) and their Crack IT open innovation platform (83).

Wellcome’s grant forms limit the number of publications applicants can submit and explicitly invite applicants to detail other achievements. This is combined with explicit guidance for panel members reminding them of the importance of taking a broad view when assessing individuals (84).

Discussion

The HKPs focus on promoting assessment practices that strengthen research integrity by deliberately concentrating primarily on what research institutions can do to modify the criteria used by PTCs for career assessments. The five principles we formulated are aimed at how research institutions should incentivize, reward and assess individual researchers within their respective organization. The HKPs do not address gender and other forms of diversity, inclusiveness, and other related issues. These themes require an assessment of a group of researchers (e.g., research institution) when making decisions about
funding allocations or human resources policies. Individual researchers are obviously not in a position to change their gender, equity or diversity. Furthermore, these issues concern the social justice and societal relevance of research rather than research integrity.

Dissemination
The World Conferences on Research Integrity (WCRI) Foundation (85) and the REduce research Waste And Review Diligence (REWARD) Alliance (86) will make the HKPs available on their websites. This ‘home’ will include the principles, the signatories, infographics, translations into several languages (ongoing), future implementation plans (ongoing), and crucially, a place to highlight those who have endorsed the HKPs. Beyond journal publication, we are developing other synergistic dissemination routes.

Endorsement and Uptake
Research institutions are key to the HKPs. They are the home of current and future researchers, where promotion and tenure assessments are carried out. To help facilitate HKPs ‘on the ground’, local key opinion leaders, and their endorsement, should be included in any plan. The HKPs have been recognized by the Governing Board of the WCRI Foundation and the Steering Committee of the REWARD Alliance. We invite academic institutions, funders, other groups and individuals to do likewise on the WCRI Foundation’s website.

We are inviting individuals and organizations to deliver brief (2-3 minutes) YouTube testimonials as to how they have implemented the HKPs (categorized by stakeholder group) and we will provide a link to these videos on the WCRI Foundation website. This approach can serve as a pragmatic way for individuals and organizations to show how they are endorsing and using the HKPs and as a nudge to others to do likewise.

To implement some of these principles is likely straightforward although this might not be the case for all principles. To do so requires more understanding of the complexities of today’s research environment, such as the availability of institutional infrastructure, whether current CV formats are optimal to collect best practices, enabling transparency about career assessment, and considering closer alignment with policies of funders.
We would like to evaluate our approach and develop tool kits for those interested in ways to implement the five principles. We will work with signatories to take this forward. We see the HKPs as an important step along the way to improving research integrity and we encourage an ongoing dialogue to support implementation of these important principles.
Acknowledgments

The many participants to the 6th World Conference on Research Integrity who provided feedback on earlier versions of the document and actively participated in the focus group sessions during the conference.
References

11. Boote JD, Dalgleish M, Freeman J, Jones Z, Miles M, Rodgers H. But is it a question worth asking? A reflective case study describing how public involvement can lead to researchers’ ideas being abandoned. Health Expect 2012; published online May 31. DOI:10.1111/j.1369-7625.2012.00771.x

20. Rice DB, Raffoul H, Ioannidis JPA, Moher D. Academic criteria for promotion and tenure in faculties of biomedical sciences: a cross-sectional analysis of 146 universities. bioRxiv 802850; doi: https://doi.org/10.1101/802850

23. Tunis AS, McInnes MD, Hanna R, Esmail K. Association of study quality with completeness of reporting: have completeness of reporting and quality of systematic reviews and meta-analyses in major radiology journals changed since publication of the PRISMA statement? Radiology. 2013;269(2):413-426

27. https://f1000research.com/nc3rs

34. Liberati A. An unfinished trip through uncertainties. BMJ 2004; 328: 531

69. https://www.nc3rs.org.uk/funding-scheme-priority-areas
70. https://www.nc3rs.org.uk/camaradesnc3rs-systematic-review-facility-syrf
71. The scholarly kitchen. [Internet]. Available from: https://scholarlykitchen.sspnet.org/2018/10/18/credit-for-peer-review-what-exactly-does-that-mean/
79.
82. https://www.nc3rs.org.uk/skills-and-knowledge-transfer-grants
83. https://nc3rs.org.uk/crackit/
Figure 1: Robust, rigorous and transparent practice and impact

<table>
<thead>
<tr>
<th>Research stage</th>
<th>Potential measures of rigorous research practice</th>
<th>Importance to research quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question</td>
<td>Knowledge synthesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Priority-setting exercise; stakeholder(s) engagement;</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>Open protocols; (Pre)registration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reuse of protocol by others</td>
<td>Useful and relevant research that builds on previous research</td>
</tr>
<tr>
<td>Conduct</td>
<td>Quality assurance of data; Data sharing; sharing materials</td>
<td>Reduces publication bias and other reporting biases; Enhances reproducibility</td>
</tr>
<tr>
<td></td>
<td>Reuse of data/materials by others</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>Analytical code sharing</td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>Transparency; open access; Use of reporting guidelines</td>
<td></td>
</tr>
<tr>
<td>Dissemination</td>
<td>Impact on research (including altmetrics; citations)</td>
<td>Focuses on outcomes & impact of research</td>
</tr>
<tr>
<td></td>
<td>Impact on practice/society</td>
<td></td>
</tr>
</tbody>
</table>

1Items in black are measures of responsible research practice; items in red are measures of use by others